%0 Journal Article
%T On the variable sum exdeg index and cut edges of graphs
%J Communications in Combinatorics and Optimization
%I Azarbaijan Shahid Madani University
%Z 2538-2128
%A Kanwal, Ansa
%A Aslam, Adnan
%A Raza, Zahid
%A Iqbal, Naveed
%A Kometa, Bawfeh
%D 2021
%\ 12/01/2021
%V 6
%N 2
%P 249-257
%! On the variable sum exdeg index and cut edges of graphs
%K Molecular descriptor
%K topological index
%K variable sum exdeg index
%K cut edge
%K clique
%R 10.22049/cco.2021.26865.1152
%X The variable sum exdeg index of a graph $G$ is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number, $d_G(u)$ is the degree of a vertex $uin V(G)$. In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every $a>1$.
%U http://comb-opt.azaruniv.ac.ir/article_14142_22abcc9eb4c4e3d46d7547d2a67702ad.pdf